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Quantization in the inversion layer and phase coherent transport are anticipated to have significant
impact on device performance in ‘‘ballistic’’ nanoscale transistors. While the role of some quantum
effects have been analyzed qualitatively using simple one-dimensional ballistic models,
two-dimensional ~2D! quantum mechanical simulation is important for quantitative results. In this
paper, we present a framework for 2D quantum mechanical simulation of a nanotransistor/metal
oxide field effect transistor. This framework consists of the nonequilibrium Green’s function
equations solved self-consistently with Poisson’s equation. Solution of this set of equations is
computationally intensive. An efficient algorithm to calculate the quantum mechanical 2D electron
density has been developed. The method presented is comprehensive in that treatment includes the
three open boundary conditions, where the narrow channel region opens into physically broad
source, drain and gate regions. Results are presented for ~i! drain current vs drain and gate voltages,
~ii! comparison to results from Medici, and ~iii! gate tunneling current, using 2D potential profiles.
Methods to reduce the gate leakage current are also discussed based on simulation results. © 2002
American Institute of Physics. @DOI: 10.1063/1.1432117#

I. INTRODUCTION

Metal oxide field effect transistors ~MOSFETs! with
channel lengths in the tens of nanometer regime have re-
cently been demonstrated by various research labs.1–3 Design
considerations to yield devices with desirable characteristics
have been explored in Refs. 4–8. Device physics of these
MOSFETs were analyzed using simple quasi-one-
dimensional models.9–13 The best modeling approach for de-
sign and analysis of nanoscale MOSFETs is presently un-
clear, though a straightforward application of semiclassical
methods that disregards quantum mechanical effects is gen-
erally accepted to be inadequate. Quantum mechanical mod-
eling of MOSFETs with channel lengths in the tens of na-
nometers is important for many reasons:

~i! MOSFETs with ultrathin oxide require an accurate
treatment of current injection from source, drain and gate.
Gate leakage is important because it places a lower limit on
the OFF current.

~ii! Ballistic flow of electrons across the channel be-
comes increasingly important as the channel length de-
creases.

~iii! The location of the inversion layer changes from the
source to the drain end, and its role in determining the C – V
and I – V characteristics is most accurately included by a
self-consistent solution of Poisson’s equation and a quantum
mechanical description to compute the charge density.

~iv! Approximate theories of quantum effects included in
semiclassical MOSFET modeling tools are desirable from
practical considerations because semiclassical methods are
numerically less expensive, and much of the empirical and

semiclassical MOSFET physics developed over the last few
decades continues to hold true in many regions of a nanos-
cale MOSFET. Examples of semiclassical methods that con-
sider some quantum mechanical aspects are the density
gradient,14,15 and effective potential16 approaches, and quan-
tum mechanical approximations used in the Medici
package.17 Fully quantum mechanical simulations can play
an important role in benchmarking such simulators.

Central to quantum mechanical approaches to charge
transport modeling is the self-consistent solution of a wave
equation to describe the quantum mechanical transport, Pois-
son’s equation, and equations for statistics of the particle
ensemble. In the absence of electron–electron and electron–
phonon interactions ~state of the scatterer does not change!,
the Landauer–Buttiker formalism18,19 is applicable. In this
formalism, the wave equation is Schrodinger’s equation and
the statistics is represented throughout the device by the
Fermi–Dirac distribution of particles incident from the con-
tacts ~source, drain and gate!. In the presence of electron–
phonon interaction, the Wigner function ~WF! and nonequi-
librium Green’s function ~NEGF! formalisms are used. The
NEGF approach has been quite successful in modeling
steady state transport in a wide variety of one-dimensional
~1D! semiconductor structures.20,21

A number of groups have started developing theory and
simulation for fully quantum mechanical two-dimensional
simulation of MOSFETs using the: real space approach,22–24

k-space approach,25 Wigner function approach,26 and non-
equilibrium Green’s function approach.13,27,28 Other groups
have taken a hybrid approach using the Monte Carlo method.
The Monte Carlo approach, has been quite successful in de-
scribing scattering mechanisms in MOSFETs, in comparisona!Electronic mail: anant@nas.nasa.gov
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to fully quantum mechanical approaches, and can also in-
clude ballistic effects and the role of quantized energy levels
in the MOSFET inversion layer in an approximate
manner.29–31 Discussing the relative merits of various ap-
proaches and quantum-corrected drift-diffusion approaches
is important. In fact, such a comparison of methods using
standard device structures has been initiated32 but much
work remains to be done in comparing and studying the suit-
ability of different methods. Comparison of various methods
is not the purpose of this paper. The purpose of this paper is
to describe development of a particular approach, namely the
NEGF approach, for numerical simulation of MOSFETs with
two-dimensional ~2D! doping profiles and charge injection
from the source, drain and gate contacts. 2D simulation sig-
nificantly increases computational effort over the 1D case.
Nonuniform spatial grids are essential to limit the total num-
ber of grid points while at the same time resolving physical
features. A new algorithm for efficient computation of elec-
tron density without complete solution of the system of equa-
tions is presented. The computer code developed is used to
calculate the drain and gate tunneling current in ultrashort
channel MOSFETs. Results from our approach and Medici
are compared. The paper is organized as follows: formalism
~Sec. II!, role of polysilicon gate depletion Sec. III A, slopes
of Id vs the gate (Vg) and drain (Vd) voltages ~Secs. II A–
III C!, role of anisotropic effective mass ~Sec. III D!, role of
gate tunneling current as a function of gate oxide thickness
and gate length in determining the OFF current ~Sec. III E!.
It is emphasized that the calculations presented include a
self-consistent treatment of two-dimensional gate oxide tun-
neling. Prior treatments of gate oxide tunneling in semiclas-
sical 2D simulators incorporated 1D models.

II. FORMALISM

A. The governing equations

We consider Nb independent valleys for the electrons
within the effective mass approximation. The Hamiltonian of
valley b is

Hb~r!52

\2

2 F d

dx S 1

mx
b

d

dx D 1

d

dy S 1

my
b

d

dy D
1

d

dz S 1

mz
b

d

dz D G1V~r!, ~1!

where (mx
b ,my

b ,mz
b) are the components of the effective

mass in valley b. The equation of motion for the retarded
(Gr) and less-than (G,) Green’s functions are19,33,34

@E2Hb1
~r1!#Gb1b2

r ~r1 ,r2 ,E !

2E drSb1 ,b8

r
~r1 ,r,E !Gb8,b2

r
~r,r2 ,E !5db1 ,b2

d~r1 ,r2!

~2!

and

@E2Hb1
~r1!#Gb1 ,b2

, ~r1 ,r2 ,E !

2E drSb1 ,b8

r
~r1 ,r,E !Gb8,b2

,
~r,r2 ,E !

5E drSb1 ,b8

,
~r1 ,r,E !Gb8,b2

a
~r,r2 ,E !, ~3!

where Ga is the advanced Green’s function. In the above
equations, the coordinate spans only the device ~see Fig. 1!.
The influence of the semi-infinite regions of the source (S),
drain (D), and polysilicon gate (P), and scattering mecha-
nisms ~electron–phonon! are included via the self-energy
terms (b1 ,b8

r and (b1 ,b8

, . We assume that charge is injected

independently from the contact into each valley. Then,
(b1 ,b2 ,C

a
5(b1 ,C

a db1 ,b2
, where C represents the self-energy

due to contacts. Finally, the hole bands are treated using the
drift-diffusion model, which is expected to be a good ap-
proximation for n-MOSFETs.

The electrostatic potential varies in the ~x,y! plane, and
the system is translationally invariant along the z-axis. So, all
quantities A(r1 ,r2 ,E) depend only on the difference coordi-
nate z12z2 . Using the relation,

A~r1 ,r2 ,E !5E dkz

2p
e ikz~z12z2!A~x1 ,y1 ,x2 ,y2 ,kz ,E !,

~4!

the equations of motion for Gr and G, simplify to

FE2

\2kz
2

2mz
2Hb~r1!GGb

r ~r1 ,r2 ,kz ,E !

2E drSb
r ~r1 ,r,kz ,E !Gb

r ~r,r2 ,kz ,E !5d~r12r2! ~5!

and

FIG. 1. The equations are solved in a 2D nonuniform spatial grid, with
semi-infinite boundaries as shown. Each column q comrises the diagonal
blocks of Eqs. ~19! and ~31!. The electrostatic potential is held fixed at the
begining of the semi-infinte regions closest to the device.
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FE2

\2kz
2

2mz
2Hb~r1!GGb

r ~r1 ,r2 ,kz ,E !

2E drSb
r ~r1 ,r,kz ,E !Gb

,~r,r2 ,kz ,E !

5E drSb
,~r1 ,r,kz ,E !Gb

a~r,r2 ,kz ,E !, ~6!

where Zb5Zb ,b , and for the remainder of the paper, r
→(x ,y).

The density of states @N(r,kz ,E)# and charge density
@r(r,kz ,E)# are the sum of the contributions from the indi-
vidual valleys,

N~r,kz ,E !5(
b

Nb~r,kz ,E !52

1

p
Im@Gb

r ~r,r,kz ,E !# ,

~7!

r~r,kz ,E !5(
b

rb~r,kz ,E !52iGb
,~r,r,kz ,E !. ~8!

B. G r and GË: Discretized matrix equations

Self-consistent solution of the Green’s function and
Poisson’s equations requires repeated computation of the
nonequilibrium charge density. This computation is often the
most time consuming part in modeling the electronic prop-
erties of devices.

The common procedure to evaluate the electron density
uses the expression,

rb~r,kz ,E !52iGb
,~r,r,kz ,E !

52iE dr1dr2Gb
r ~r,r1 ,kz ,E !

3Sb
,~r1 ,r2 ,kz ,E !Gb

a~r2 ,r,kz ,E , ~9!

where Gr(r1 ,r2 ,kz ,E) must be computed between all NxNy

grid points and those grid points involving a nonzero Sa.
The operation count required to solve for all elements of Gr

scales as (NxNy)3, and so the use of Eq. ~9! is expensive. We
have developed a new recursive algorithm to compute the
electron density in systems when the discretized version of
the LHS of Eqs. ~5! and ~6! is block tridiagonal. This algo-
rithm requires only the evaluation of the diagonal blocks of
Gr. The operation count of this algorithm scales as Nx

3Ny ~or
NxNy

3! when the diagonal blocks correspond to lattice points
in the x ~or y! direction. We summarize the recursive algo-
rithm to calculate Gr ~Sec. II C! as it sets the stage for the
new algorithm to compute G, ~Sec. II D!. We stress that
Poisson’s equation only requires the diagonal elements of
G, @Eq. ~9!#. The algorithm we develop in Sec. II C however
computes the diagonal blocks of G,. While this is much
better than using Eq. ~9! directly as discussed above, new
algorithms to solve for only the diagonal elements with op-
eration counts smaller than Nx

3Ny ~or NxNy
3! are very desir-

able.

In matrix form, Eqs. ~5! and ~6! are written as

A8Gr
5l ~10!

and

A8G,
5S,Ga. ~11!

The self-energies due to the S, D, and P are nonzero only
along the lines y5yS5y1 , y5yD5yNy

and x5xP , respec-
tively ~see Fig. 1!. The A8 matrix has a dimension of NxNy

and is ordered such that all grid points located at a particular
y-coordinate correspond to its diagonal blocks. The notation
adopted is that A j1 , j2

8 (i ,i8) refers to the off-diagonal entry

corresponding to grid points (x i ,y j1
) and (x i8 ,y j2

). The non-
zero elements of the diagonal blocks of the A8 matrix are
given by

A j , j8 ~ i ,i !5E82V i , j2T j , j~ i11,i !2T j j~ i21,i !

2T j11,j~ i ,i !2T j21,j~ i ,i !2SS
r ~x i ,x i!d j ,1

2SD
r ~x i ,x i!d j ,Ny

2SP
r ~y j ,y j!d i ,1

2Sr~x i ,y j ;x i ,y j!, ~12!

A j , j8 ~ i61,i !5T j , j~ i61,i !2SS
r ~x i61 ,x i!d j ,1

2SD
r ~x i61 ,x i!d j ,Ny

2Sr~x i61 ,y j ;x i ,y j!,

~13!

A j , j8 ~ i ,i8!52SS
r ~x i ,x i8!d j ,12SD

r ~x i ,x i8!d j ,Ny
,

for i8Þi , i61, ~14!

where E85E2\2kz
2/2mz and V i , j5V(x i ,y j). The off-

diagonal blocks are

A j61,j8 ~ i ,i !5T j61,j~ i ,i !2SP
r ~y j ,y j61!d i ,1 ,

A j , j8
8 ~ i ,i8!50, for j8Þ j , j61. ~15!

The nonzero elements of the T matrix are defined by

T j , j~ i61,i !5

\2

2m6x

2

x i112x i21

1

ux i612x iu
, ~16!

T j61,j~ i ,i !5

\2

2m6y

2

y j112y j21

1

uy j612y ju
, ~17!

where m6x
52/(m i61,j1m i , j) and m6y

52/(m i , j611m i , j).
Nonzero elements of SP

r (y j ,y y8), where j8Þ j are neglected
to ensure that A8 is block tridiagonal ~the algorithm to cal-
culate Gr and G, relies on the block tridiagonal form of A8!.
The l appearing in Eq. ~10! corresponds to the delta function
in Eq. ~5!. l is a diagonal matrix whose elements are given
by
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l j , j
~ i ,i !

5

4

~x i112x i21!~y i112y i21!
. ~18!

C. Recursive algorithm to calculate G r

Premultiplying Eq. ~10! by l21,

AGr
5I , ~19!

where matrix A is a symmetric matrix for both uniform and
nonuniform rectangular grids. ~Note that A8 is symmetric
only for a uniform grid.! The recursive algorithm to calculate
the diagonal blocks of the full Green’s function is discussed
now, using Dyson’s equation for Gr, and the left-connected
Green’s function as in Refs. 20, 21;

~i! Dyson’s equation for Gr: The solution to

S AZ ,Z AZ ,Z8

AZ8,Z AZ8,Z8

D S GZ ,Z
r GZ ,Z8

r

GZ8,Z
r GZ8,Z8

r D 5S I O

O I D . ~20!

is

Gr
5Gr0

1Gr0UGr ~21!

5Gr0
1GrUGr0, ~22!

where

Gr
5S GZ ,Z

r GZ ,Z8

r

GZ8,Z
r GZ8,Z8

r D ,

Gr0
5S GZ ,Z

r0 O

O GZ8,Z8

0 D 5S AZ ,Z
21 O

O AZ8,Z8

21 D , and

U5S O 2AZ ,Z8

2AZ8,Z O D . ~23!

The advanced Green’s function (Ga) is by definition re-
lated to Gr by

Ga
5Gr†

5Ga0
1Ga0U†Ga ~24!

5Ga0
1GaU†Ga0. ~25!

Equation ~21! is called Dyson’s equation.19,33

~ii! Left-connected retarded Green’s function: The left-
connected ~superscript L! retarded ~superscript r! Green’s
function grLq is defined by the first q blocks of Eq. ~19!
~includes the open boundaries attached to the lattice points
via the self-energy! by

A1:q ,1:qgrLq
5Iq ,q , where Iq5I1:q ,I:q . ~26!

grLq11 is defined in a manner identical to grLq except that
the left-connected system is comprised of the first q11

blocks of Eq. ~19!. In terms of Eq. ~20!, the equation gov-
erning grLq11 follows by setting Z51:q and Z85q11. Us-
ing Dyson’s equation @Eq. ~21!#, we obtain

gq11,q11
rLq11

5~Aq11,q111Aq11,qgq ,q
rLqAq ,q11!21. ~27!

Note that the last element gN ,N
rLN is equal to the fully con-

nected Green’s function GN ,N
r , which is the solution to Eq.

~19!.
~iii! Full Green’s function in terms of the left-connected

Green’s function: Consider Eq. ~20! such that AZ ,Z

5A1:q ,1:q , AZ8,Z8
5Aq11:N ,q11:N and AZ ,Z8

5A1:q ,q11:N .
Noting that the only nonzero element of A1:q ,q11:N is Aq ,q11

and using Eq. ~21!, we obtain

Gq ,q
r

5gq ,q
rLq

1gq ,q
rlq ~Aq ,q11Gq11,q11

r Aq11,q!gq ,q
rLq ~28!

5gq ,q
rLq

1gq ,q
rLqAq ,q11Gq11,q

r . ~29!

Both Gq ,q
r and Gq11,q

r are used in the algorithm for electron
density, and so storing both sets of matrices will be useful.

In view of the above equations, the algorithm to compute
the diagonal blocks Gq ,q

r is given by the following steps:

~1! g11
rL1

5A1
21;

~2! For q51,2,...,N21, compute Eq. ~27!;
~3! For q5N21, N22,...,1, compute Eq. ~29!. Store Gq11,q

r

if memory permits for use in the algorithm for electron
density.

D. Recursive algorithm to calculate density „GË…

The discretized form of Eq. ~6! is

A8G,
5S,Ga, ~30!

where the dimension of the matrices involved are N
5NxNy . Premultiplying by l21,

AG,
5S,Ga, ~31!

where S, in Eq. (31) is equal to l21 times the S, that
appears in Eqs. (3) and (30).

Following Sec. II C, the algorithm to calculate the elec-
tron density ~diagonal elements of G,! is discussed in terms
of a Dyson’s equation for G, and the left-connected g,L:

~i! Dyson’s equation for G,: The solution to

S AZ ,Z AZ ,Z8

AZ8,Z AZ8,Z8

D S GZ ,Z
, GZ ,Z8

,

GZ8,Z
, GZ8,Z8

, D
5S SZ ,Z

, SZ ,Z8

,

SZ8,Z
,

SZ8,Z8

, D S GZ ,Z
a GZ ,Z8

a

GZ8,Z
a GZ8,Z8

a D ~32!

can be written as

G,
5Gr0UG,

1Gr0S,Ga, ~33!

2346 J. Appl. Phys., Vol. 91, No. 4, 15 February 2002 Svizhenko et al.

Downloaded 15 Feb 2002 to 129.99.66.97. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



where Gr0 and U have been defined in Eqs. ~23!, and G,

and Ga are readily identifiable from Eq. ~32!. Using Ga

5Ga0
1Ga0U†Ga, Eq. ~33! can be written as

G,
5G,0

1G,0U†Ga
1Gr0UG, ~34!

5G,0
1GrUG,0

1G,U†Ga0, ~35!

where

G,0
5Gr0S,Ga0. ~36!

~ii! Left-connected g,: g,Lq is the counter part of grLq,
and is defined by the first q blocks of Eq. ~31!:

A1:q ,1:qg,Lq
5S1:q ,1:q

, g1:q ,1:q
aLq . ~37!

g,Lq11 is defined in a manner identical to g,Lq except that
the left-connected system is comprised of the first q11
blocks of Eq. ~31!. In terms of Eq. ~32!, the equation gov-
erning g,Lq11 follows by setting Z51:q and Z85q11. Us-
ing the Dyson’s equations for Gr and G,, gq11,q11

,Lq11 can be
recursively obtained ~derivation is presented in Appendix! as

gq11,q11
,Lq11

5gq11,q11
rLq11 @Sq11,q11

,
1sq11

, #gq11,q11
aLq11

1gq11,q11
rLq11 Sq11,q

, gq ,q11
aLq11

1gq11,q
rLq11Sq ,q11

, gq11,q11
aLq11 , ~38!

which can be written in a more intuitive form as

gq11,q11
,Lq11

5gq11,q11
rLq11 @Sq11,q11

,
1sq11

,
1Sq11,q

, gq ,q
aLqAq ,q11

†

1Aq11,qgq ,q
rLqSq ,q11

, #gq11,q11
qLq11 , ~39!

where sq11
,

5Aq11,qgq ,q
,LqAq ,q11

† . Equation ~39! has the

physical meaning that gq11,q11
,Lq11 has contributions due to four

injection functions: ~i! an effective self-energy due to the
left-connected structure that ends at q, which is represented
by sq11

, , ~ii! the diagonal self-energy component at grid
point q11 that enters Eq. ~31!, and ~iii! the two off-diagonal
self-energy components involving grid points q and q11.

~iii! Full less-than Green’s function in terms of left-
connected Green’s function: Consider Eq. ~32! such that AZ

5A1:q ,1:q , AZ85Aq11:N ,q11:N and AZ ,Z8
5A1:q ,q11:N . Not-

ing that the only nonzero element of A1:q ,q11:N is Aq ,q11 and
using Eq. ~34!, we obtain

Gq ,q
,

5gq ,q
,Lq

1gq ,q
,LqAq ,q11

† Gq11,q
a

1gq ,q11
,0 Aq11,q

† Gq ,q
a

1gq ,q
rLqAq ,q11Gq11,q

, . ~40!

Using Eq. ~35!, Gq11,q
, can be written in terms of Gq11,q11

,

and other known Green’s functions as

Gq11,q
,

5gq11,q
,0

1Gq11,q
r Aq ,q11gq11,q

,0

1Gq11,q11
r Aq11,qgq ,q

,Lq
1Gq ,q11

† Aq ,q11
† gq ,q

aLq . ~41!

Substituting Eq. ~41! in Eq. ~40! and using Eqs. ~21! and
~22!, we obtain

Gq ,q
,

5gq ,q
,Lq

1gq ,q
rLq~Aq ,q11Gq11,q11

, Aq11,q
† !gq ,q

aLq

1@gq ,q
,LqAq ,q11

† Gq11,q
a

1Gq ,q11
r Aq11,qgq ,q

,Lq#

1@gq ,q11
,0 Aq11,q

† Gq ,q
a

1Gq ,q
r Aq ,q11gq11,q

,0 # , ~42!

where

gq ,q11
,0

5gq ,q
r0 Sq ,q11

, gq11,q11
a0 , ~43!

gq11,q
,0

5gq11,q11
r0 Sq11,q

, gg ,g
a0 . ~44!

The terms inside the square brackets of Eq. ~42! are Hermit-
ian conjugates of each other.

In view of the above equations, the algorithm to compute
the diagonal blocks of G, is given by the following steps:

~1! g11
,L1

5g11
r0SL

,g11
a0;

~2! For q51,2,...,N21, compute Eq. ~39!;
~3! For q5N21, N22,...,1, compute Eqs. ~42!–~44!.

The current density flowing between two neighboring
blocks q and q11 is given by

J~q→q11,kz ,E !5(
b

Jb~q→q11,kz ,E !

5

2e

h (
b

Tr@Tq ,q11Gb;q ,q11
, ~kz ,E !

2Tq11,qGb;q11,q
, ~kz ,E !# , ~45!

where T has been defined in Eqs. ~16! and ~17!. The current
that has leaked into the gate between any two blocks p and q
is

Jgate
qp

5(
b

Jb~p→p11,kz ,E !2(
b

Jb~q→q11,kz ,E !,

~46!

and the total gate leakage current obtained by choosing p and
q near the source and drain ends of the device.

E. Expressions for contact self-energies „SS
r , SD

r ,
and SP

r …

Potential and doping profiles in the semi-infinite regions
to the ~a! left of ‘‘S’’ and right of ‘‘D’’ are equal to the value
at q51 and Ny , respectively ~Fig. 1!. That is, they do not
vary as a function of the y-coordinate, and ~b! top of the ‘‘P’’
is equal to the value of the topmost grid line of ‘‘P’’ ~Fig. 1!.
That is, they are not a function of the x-coordinate. The re-
tarded surface Green’s functions of these semi-infinite re-
gions are calculated from Eq. ~19!, when the matrices in-
volved are semi-infinite. All diagonal submatrices of the A
matrix are equal to A1,1 , ANy ,Ny

, and AP , and all first upper
off-diagonal matrices of the A matrix are equal to A1,2 ,
ANy21,N

y8
, and AP21,P , in the source, drain and polysilicon

regions, respectively. We spell out the entire matrix for the
source semi-infinite regions below ~see Fig. 1!:
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S
" " 0 0 0 0

" " " 0 0 0
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0 0 A2,1 A1,1 A1,2 0

0 0 0 A2,1 A1,1 A1,2

0 0 0 0 A2,1 A1,1

D S
" " " " " "

" " " " " "

" " g23,23 g23,22 g23,21 g23,0

" " g22,23 g22,22 g22,21 g22,0

" " g21,23 g21,22 g21,21 g21,0

" " g0,23 g0,22 g0,21 g0,0

D 5S
" 0 0 0 0 0

0 " 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

D . ~47!

The surface Green’s function of these regions can be ob-
tained by using methods in matrix algebra that transform the
two-dimensional wire representing the semi-infinite contacts
with Nx grid points to Nx one-dimensional wires.

The self-energies due to the contacts are ~see Fig. 1!

SS
r ~kz ,E !5A1,0g0,0~kz ,E !A0,1 , ~48!

SD
r ~kz ,E !5ANy ,Ny11gNy11,Ny11~kz ,E !ANy11,Ny

, ~49!

SP
r ~kz ,E !5APgP~kz ,E !AP , ~50!

SS
,~kz ,E !522iA1,0 Im@g0,0~kz ,E !#A0,1 f S~E !, ~51!

SD
,~kz ,E !522iANy ,Ny11 Im@gNy11,Ny11~kz ,E !#

3ANy11,Ny
f D~E !, ~52!

SP
,~kz ,E !522iAP Im@gP~kz ,E !#AP f P~E !, ~53!

where f i(E) is the Fermi factor in contact iPS , D,P.
When Sb

a(r1 ,r2 ,kz ,E) depends only on Exy5E
2(\2kz

2/2mz), then Eqs. ~5! and ~6! simplify to

@Exy2Hb~r1!#Gb
r ~r1 ,r2 ,Exy!

2E drSb
r ~r1 ,r,Exy!Gb

r ~r,r2 ,Exy!5d~r12r2! ~54!

~55!

and

@Exy2Hb~r1!#G,~r1 ,r2 ,Exy!

2E drSb
r ~r1 ,r,Exy!Gb

,~r,r2 ,kz ,E !

5E drSa
,~r1 ,r,Exy!Gb

a~r,r2 ,Exy!. ~56!

While solving the equations, to keep the problem two-
dimensional, mz has to be independent of ~x,y!. So, we as-
sume mz(SiO2)5mz(Si).

III. RESULTS AND DISCUSSION

The steady state characteristics of MOSFETS that are of
practical interest are the drive current, OFF current, slope of
drain current vs drain voltage, and threshold voltage. In this
section, we show that quantum mechanical simulations yield

significantly different results from drift-diffusion based
methods. These differences arise because of the following
quantum mechanical features:

~i! Polysilicon gate depletion in a manner opposite to the
classical case;

~ii! Dependence of the resonant levels in the channel on
the gate voltage;

~iii! Tunneling of charge across the gate oxide and from
source to drain;

~iv! Quasiballistic flow of electrons.

The MIT well-tempered 25 nm device structure35 is cho-
sen for the purpose of discussion ~MIT 25 nm device
structure35 is hereafter referred to as MIT25!. The method
and computer code developed can however handle a wide
variety of two-dimensional structures with many terminals.
We first compare the potential profiles from a constant mo-
bility drift-diffusion solution and our quantum calculations at
equilibrium. The motivation for this comparison results from
the observation that the classical and quantum potential pro-
files should be in reasonable agreement, if the doping density
is significantly higher than the electron and hole densities
and the boundary conditions are the same. The doping profile
of MIT25 meets this requirement in the channel region at
small Vg , and we verify that the potential profiles are in
reasonable agreement at y50 ~see ‘‘Q1 flat band’’ and ‘‘DD
flat band’’ of Fig. 2!. The legend ‘‘flat band’’ refers to the
potential at x52tox being fixed at the applied gate potential.

An index of abbreviations used is as follows:

Length scales: tox , oxide thickness; LP , polysilicon gate
thickness in the x-direction; LB , boundary of substrate re-
gion in the x-direction; Ly , Poisson’s and NEGF equations
are solved from 2Ly/2 to 1Ly/2; Lg , length of polysilicon
gate region in the y-direction.

Models: Q1, quantum mechanical calculations using an
isotropic effective mass; Q3, quantum mechanical calcula-
tions using an anisotropic effective mass; DD, drift diffusion;
flat band, potential in the polysilicon gate region is held fixed
from x52(tox1LP) to x52tox at the bulk value. q-poly,
potential in the gate polysilicon region is held fixed at x
52(tox1LP) at the bulk value, and the potential is com-
puted quantum mechanically ~self-consistently! for x.

2(tox1LP); c-poly, classical treatment of gate polysilicon
region, as in DD.

Current and voltage: Id , drain current; Ig , gate current;
Vd , drain voltage; Vg , gate voltage.
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The values of constants assumed to obtain the numerical
results of this section are as follows, unless otherwise noted.

Electron effective mass of silicon: 0.3283 ~isotropic!,
0.19 and 0.98 ~anisotropic!, electron effective mass of SiO2 .
mx5my50.5 and same as silicon in mz direction, hole effec-
tive mass of silicon is 0.49, band gap of silicon (SiO2): 1.12
eV ~8.8 eV!, energy barrier between the silicon and the oxide
DEC53.1 eV, dielectric constant of Si(SiO2) is eSi511.9
~3.9! and kT50.025 85 eV.

A. Id vs Vg : Effect of polysilicon depletion region

The quantum mechanically calculated electron density
near the SiO2 barrier in the polysilicon region is smaller than
the uniform background doping density. This is because the
electron wave function is small close to the barrier. As a
result, the conduction band in the polysilicon gate bends in a
direction opposite to that computed semiclassically ~compare
x and triangle in Fig. 2!.36,37 The band bending in the poly-
silicon gate plays a significant role in determining the thresh-
old voltage and OFF current. To emphasize the importance
of band bending, we plot the drain current vs gate voltage
calculated with the gate polysilicon region treated as ~i! ‘‘flat
band’’ and ~ii! ‘‘q-poly.’’ We find that the computed current is
larger in ~ii! because quantum mechanical depletion of elec-
trons in the polysilicon gate region close to the oxide causes
lowering of the potential in the channel. The Id vs Vg curve
shifts by approximately an amount equal to the band bending
in the polysilicon gate, in comparison to the flat band case.
This band bending, which is measured from 2(LP1tox) to
2tox at equilibrium, is about 130 meV at the given doping
density ~Fig. 2!. The influence of band gap narrowing has
been neglected here. It must be mentioned that the band gap
narrowing effect will tend to make the quantum mechanical
contribution to the polysilicon band bending just discussed
smaller. Future work to determine the influence of bandgap
narrowing is necessary.

Computationally, a 2D treatment of the polysilicon gate
region is expensive because of the additional grid points re-
quired. Note that matrix inversion depends on the cube of the
matrix dimension. We point out that for highly doped poly-
silicon gate ~in the absence of gate tunneling!, a shift in the

Id(Vg) curve from ~i! by the equilibrium 1D built-in poten-
tial does a reasonable job of reproducing the quantum me-
chanical result ~see triangles in Fig. 3!. This approximation
becomes progressively poorer with increase in gate voltage,
as can be seen from the figure. This is true especially for a
smaller polysilicon doping density such as 1E20 ~results are
not discussed here!.

B. Id vs Vg : Comparison to Medici

In the absence of gate tunneling and inelastic tunneling,
the quantum mechanical current is

Id5

2e

h E dETSD~E !@ f S~E !2 f D~E !# , ~57!

where TSD is the transmission probability from source to
drain, and f S and f D are the Fermi–Dirac factors in the
source and drain, respectively. The total transmission ~Fig. 4!
is steplike with integer values at the plateaus in-spite of the
complicated two-dimensional electrostatics. In visual terms,
the energies at which the steps turn on are determined by an
effective ‘‘subband dependent’’ source injection barrier, in
contrast to the source injection barrier in drift-diffusion
calculations.10 This subband dependent source injection bar-
rier is simply the maximum energy of the subband between
source and drain due to quantization in the direction perpen-
dicular to the gate plane ~x-direction of Fig. 1!. From a prac-
tical view point, the following two issues are important in
ballistic MOSFETs: ~a! typically, the total transmission as-
sumes integer value at an energy slightly above the maxi-
mum in density of states as shown in the inset of Fig. 4, and
~b! the steps develop over 50 meV ~twice the room tempera-
ture thermal energy!. So, the shape of the steps is important
in determining the value of current. Assuming a sharp step in
total transmission with integer values in a calculation of cur-
rent as in Ref. 9 is not quite accurate.

We compare the results from our quantum simulations
with published results from quantum-corrected Medici.35 To
compare the quantum and classical results, an estimate of the

FIG. 2. Potential profile at the y50 slice of MIT25, calculated by four
different methods. Note the qualitative difference of the ‘‘Q1 q-poly’’ case
due to electron depletion in the gate.

FIG. 3. Drain current vs gate voltage for Vd51 V. Quantum mechanical
treatment of the polysilicon gate ~Q1 q-poly! results in much higher current.
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energy of the first subband minima (Er1) from Fig. 4, and
the location of the classical barrier height @Eb(classical)#
~Fig. 5! are useful @Eb(classical) shown is obtained from
constant mobility simulations using Prophet#. The main fea-
tures of this comparison are:

~a! Subthreshold region: The slope d@ log(Id)#/dVg is
smaller in the quantum case when compared to Medici ~Fig.
6!. Further, the current resulting from the simple intuitive
expression

I5Iq0e ~2Er /kT ! ~58!

matches the quantum result quite accurately. Iq0 is a prefac-
tor chosen to reproduce the current at Vg50 in Fig. 6. This
match is rationalized by noting that for the values of gate
biases considered, Er1 is well above the source Fermi energy,
and Er2 is many kT ~thermal energy! above Er1 . The differ-
ence in slope between the classical and quantum results can
be understood from the slower variation of Er1 in compari-
son to Eb(classical) as a function of Vg ~Fig. 5!. We also find
that the decrease of Er1 with increases in gate voltage is
slower than the barrier height determined from the quantum
potential profiles. This arises because ~neglecting 2D effects!
Er1 is determined by a triangular well ~whose apex is the
conduction band! that becomes progressively narrower with
increase in gate voltage.

~b! Large gate biases: The drain current and slope
d@ log(Id)#/dVg are larger in the quantum case. The higher
d@ log(Id)#/dVg at large gate voltages in the quantum case
can be understood from the fact that Er1 is above the Fermi
level while Eb(classical) is below, at Vg51 V ~the quantum
current is proportional to exp(2(Er12EF)/kT)!. The mobility
model assumed in the classical case also plays a role in de-
termining the slope.

C. Id vs Vd

The values of dId /dVd and drive current are important
in MOSFET applications because they determine switching
speeds.7 Figure 7 compares the drain current vs drain voltage
for Vg50 and Vg51 V. The drive current (Vg51 V) calcu-
lated using Q1 with the polysilicon region treated in the flat
band and q-poly approximations is more than 100% and
200% larger than the results in Ref. 35. dId /dVd in the linear
region is up to three times larger in Q1. The subthreshold
drain current is smaller in Q1. We however expect that with
decreasing channel length, the subthreshold Id will become
larger than the Medici results due to quantum mechanical
tunneling.12

FIG. 4. Transmission ~1! and density of states ~DOS! vs energy at a spatial
location close to the source injection barrier, at Vg50 V and Vd51 V. The
peaks in the density of states represent the resonant levels in the channel.
Inset: DOS at three different y-locations and the total transmission. The
points y527 and 0 nm are to the left and right of the location where the
source injection barrier is largest ~close to y524 nm!.

FIG. 5. Location of the first resonant level (E r1) vs gate voltage and the
classical source injection barrier @Eb ~classical!#. Note that E r1 decreases
slower than Eb ~classical! with gate voltage due to narrowing of channel
potential well.

FIG. 6. Plot of drain current vs gate voltage from the quantum mechanical
calculations and Medici, at Vd51 V. At small gate voltages, the drain cur-
rent from Medici ~see Ref. 35! are comparable to the ‘‘Q1 flat band’’ results.
The drain current from ‘‘Q1 q-poly’’ is, however, significantly different at
large gate voltages.
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D. Isotropic vs anisotropic effective mass

The primary influence of anisotropic effective mass is to
influence the energy of the subbands in the inversion layer.
Valleys with the largest effective mass perpendicular to the
oxide (0.98m0*) have subband energies that are smaller than
the isotropic effective mass case. We see from the plot of
transmission vs energy ~Fig. 8! that the valleys with (mx

50.98m0* ,my5mz50.19m0*) have resonance levels that are
more than 50 meV lower in energy than the isotropic effec-
tive mass case. The corresponding subthreshold current ~Fig.
9! is a few hundred percent larger than the value obtained
from the isotropic effective mass case. This follows by not-
ing that the subthreshold current depends on exp(2Er1 /kT).
The drive current ~Fig. 9! from the anisotropic effective mass
case is more than 25% larger than the isotropic effective
mass case. Note that for large gate voltages the dependence
of current on Er1 is subexponential. We are not aware of any
calculations that compare the relative importance of the cur-
rent carrying capacity of electrons in the three inequivalent
valleys. We find that the valley with the largest mx

(50.98m0*) carries 89.22% and 79.77% of the current at Vg

equal to 0 and 1 V, respectively (Vd51 V). Thus all three
valleys are necessary for an accurate calculation of the bal-
listic current.

E. Gate leakage current

A major problem in MOSFETs with ultrathin oxides is
that tunneling from gate to drain will determine the OFF
current. The gate leakage current vs y is plotted for the
MIT25 device in Fig. 10. Note that while we use a value of
3.0 for the dielectric constant of SiO2 , a value of 3.9 does
not change the qualitative conclusions. At Vg50 V and Vd

51 V, the main path for leakage current is from the poly-
silicon gate contact on top of the oxide to the highly doped
(n1) regions associated with the drain @source drain exten-
sion ~SDE!# as shown in Fig. 10~a!. At nonzero Vg , there is
also an appreciable tunneling from the highly doped n1 re-

gions near the source to the polysilicon region on top of the
gate @Fig. 10~a!#. For tox51.5 nm, gate tunneling increases
the OFF current by about two orders of magnitude, and for
smaller oxide thicknesses, the gate leakage current is signifi-
cantly larger.

We propose that the gate leakage current can be reduced
by a factor of 10–100 without significantly compromising
the drive current. The drive current in these ultra small
MOSFETs is primarily determined by the source injection
barrier, or more correctly as discussed earlier by the resonant
level at the source injection barrier. So any changes that re-
sult in a reduction of the gate leakage current should not
significantly alter the location of the resonant level at the

FIG. 7. Plot of drain current vs drain voltage (Vd) from the quantum me-
chanical calculations and Medici, at Vg51 V. Note the large difference in
drive current and dId /dVd between Medici, ~see Ref. 35! ‘‘Q1 flat band’’
and ‘‘Q1 q-poly.’’

FIG. 8. Same as Fig. 4 but the anisotropic effective mass case is included.
Note that the valley with the largest mass in the x-direction has subband
energies that are about 50 meV smaller than the isotropic effective mass
case even at Vg50.

FIG. 9. Plot of drain current vs gate voltage for the isotropic and anisotropic
effective mass cases, at Vd51 V. The much higher current in the anisotropic
effective mass case ~Q3! is due to the lower suband energy shown in Fig. 8.
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source injection barrier ~and hence the drive current!. Two
methods ~without regard to fabrication issues! that help in
this direction are discussed below:

~i! Shorter or asymmetric polysilicon gate region: We
propose that the gate leakage current can be significantly
reduced by using shorter gate lengths. The main feature of
the shorter gate lengths is a small overlap between the poly-
silicon gate and the n1 region near the drain. This is picto-
rially represented in Figs. 11~a! and 11~b! with ‘‘long’’ and
‘‘short’’ gate lengths. To simulate the long and short gate
lengths, we consider the doping profile of MIT25 with Lg

525 nm and 50 nm ~gate length in Ref. 35!. The OFF cur-
rent and gate leakage current are plotted in Fig. 12. We see
that the gate leakage current reduces by more than an order
of magnitude, and the drive current is within two percent of
the Lg550 nm case, as desired ~see inset of Fig. 12!. The
spatial profile of gate leakage current for Lg525 nm is
shown in Fig. 10~b!. Though the gate leakage current reduces
significantly, a drawback of this scheme is the requirement
for very short ~approximately equal to the distance between
highly doped region near source and drain! polysilicon gate
lengths. A polysilicon gate placed asymmetrically with re-
spect to y50 such that its overlap with the n1 regions near
the drain is small, will also serve to reduce the OFF current
without compromising the drive current.

~ii! Graded oxide: The second proposal is to use a
graded oxide, which is thinner close to the source end and
thicker close to the drain end @Fig. 11~c!#. The thinner oxide
near the source is not expected to alter the source injection
barrier significantly, while the tunneling rate from gate to
drain will be significantly smaller because of the thicker ox-
ide in the drain-gate overlap region. We consider an oxide
that is 1.5 nm thick for y,110 nm and 2.5 nm for y
.11 nm, with the thickness varying linearly in between. The
polysilicon gate lengths is 50 nm. Comparison of this device
to the original MIT25 with an uniform oxide and Lg

550 nm show that while the gate leakage current decreases
by one order of magnitude, the drive current decreases by
only 30%. Further optimization of this device structure could
yield a larger drive current, while keeping the gate leakage
current small.

IV. CONCLUDING REMARKS

A modeling framework and computer code to calculate
properties of ballistic MOSFETs with open boundaries at the
source, drain and gate contacts have been developed. This
includes an algorithm to compute the electron density using
the NEGF equations that avoids solving for the entire Gr

matrix even in the presence of nonzero self-energies through-
out the device. Note that the simulations presented are 2D in
nature and also involve self-consistency. As a result, they
were numerically intensive and were typically performed on
sixteen to sixty four processors of an SGI Origin machine.

The main results of this study are:

FIG. 10. Plot of gate leakage current when the device is OFF (Vg50 V) as
a function of the y-direction, from the source to drain, for Lg equal to ~a! 50
nm and ~b! 25 nm. Note the significant gate leakage current in the regions
where the high doping in the source and drain overlap the gate in ~a!. A
shorter gate eliminates a large fraction of the gate leakage current as shown
in ~b!.

FIG. 11. Polysilicon gate and oxide configurations that could reduce the
OFF current (Vg50 V) significantly without drastically reducing the drive
current (Vg51 V). The hatched marks represent the oxide.

FIG. 12. Plot of drain and gate currents when the device is OFF (Vg

50 V) vs oxide thickness for Lg equal to 50 and 25 nm. Inset: Drain current
for the the gate lengths when the device is on (Vg51 V). At the larger
values of tox , the gate current (Ig) is significantly smaller than the drain
current (Id), meaning that the drain current is determined by electron in-
jected from the source to drain. At smaller values of tox , the drain current is
dominated by the gate leakage current as can be seen by comparing Id and
Ig in this figure. More importantly, note that the shorter gate length (Lg

525 nm) gives an order of magnitude smaller drain current when the device
is OFF for the smaller values of tox . The inset shows that the drive current
(Vd5Vg51 V) is however not effected much by the shorter gate length.
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~a! Polysilicon gate depletion causes the conduction
band close to the oxide interface to bend in a manner oppo-
site to the semiclassical case ~Fig. 2!. This causes a substan-
tial shift in the location of the conduction band bottom in the
channel, which gives rise to drain currents that are different
from the semiclassical case by one to two orders of magni-
tude. Performing quantum mechanical calculations with a
flat polysilicon region, and then shifting the gate voltage axis
~in Id vs Vg! by the quantum mechanical built-in voltage
shown in Fig. 2 results in an order of magnitude better agree-
ment with results from a quantum mechanical treatment of
the polysilicon region. This built-in voltage can simply be
determined by 1D simulations or an analytical expression. In
reality, treatment of discrete dopants in the polysilicon region
will give rise to results that are in between the ‘‘flat band’’
and ‘‘q-poly’’ cases presented in the paper.

A quantum mechanical treatment of the polysilicon gate
region results in an OFF current ~Vg50 V and Vd51 V! that
is more than 35 times larger than the OFF current from a flat
band treatment of polysilicon region and published results35

based on a sophisticated semiclassical simulator.
~b! Resonant levels in the channel the from source to

drain increase the effective source injection barrier for bal-
listic electrons. Further, even in the ballistic limit the trans-
mission versus energy reaches integer values over an energy
range that could be many times the thermal energy. Knowl-
edge of the detailed shape of transmission versus energy is
important to accurately determine the ballistic current. The
precise shape of these transmission steps depends on the de-
tails of the channel to source and drain overlap regions and
the resulting 2D potential profile. Assuming a sharp steplike
increases in the total transmission is incorrect.

The slope dId /dVd , whose importance was emphasized
in Ref. 7 and the drive current ~at Vg51 V! are about 300%
larger than reported in Ref. 35. Further, inclusion of aniso-
tropic effective mass in our calculation makes the quantum
results deviate further from the semiclassical results as
shown in Fig. 9.

~c! Tunneling of charge across the gate oxide can put a
limit on the OFF current. Models of the tunnel current for
thin oxide MOSFETs are important. We model the gate leak-
age current in two dimensions and show that significant re-
duction in the OFF current is possible without altering the
drive current significantly. This is accomplished by changing
either the gate length @Fig. 11~b!# or by introducing a graded
oxide @Fig. 11~c!#.

~d! Quasiballistic flow of electrons causes the slope of
d@ log(Id)#/dVg to be larger than the values obtained from
drift-diffusion methods using field dependent mobility mod-
els.

This paper dealt with the modeling of steady state prop-
erties of nanoscale MOSFETs in the ballistic limit. Future
work in quantum mechanical simulation of MOSFETs that
are of importance include: ~i! treatment of scattering mecha-
nisms such as interface roughness and electron–phonon
scattering,38,39 ~ii! treatment of discrete impurity dopants,40,41

~iii! switching behavior of MOSFETs/time-dependent
simulation,42,43 and ~iv! noise characteristics of nanotransis-
tors.

ACKNOWLEDGMENTS

The authors would like to thank Gerhard Klimeck ~JPL!
and Mark Lundstrom ~Purdue University! for their interest in
our work and for their useful comments, and Mark Lund-
strom and Kent Smith ~Bell Laboratory! for recommending a
procedure for faster convergence of Poisson’s and NEGF
equations. The calculations were performed on an SGI Ori-
gin 2000 machine located at NASA Advanced Supercomput-
ing ~NAS! Division, whom we acknowledge. We thank Bron
C. Nelson of NAS/SGI for resolving some high performance
computing related questions on the SGI Origin machine and
Prabhakar Shatdarsham for his valuable help with Matlab.
We thank Supriyo Bandyopadyay ~UNL, University of Ne-
braska, Lincoln! and Meyya Meyyappan ~NASA Ames Re-
search Center! for arranging this collaborative effort between
NASA Ames Research Center and UNL.

APPENDIX

Derivation of Eqs. (38) and (39):
Using Dyson’s equation for G, @Eq. ~33!#, we obtain

gq11,q11
,Lq11

5gq11,q11
r0 Aq11,q

† gq ,q11
,Lq11

1gq11,q11
r0 Sq11,q11

, gq11,q11
aLq11

1gq11,q11
r0 Sq11,q

, gq ,q11
qLq11. ~A1!

Using Eq. ~34!, gq ,q11
,Lq11 can be expressed in terms of

gq11,q11
,Lq11 , the quantity we are solving for and known Green’s

functions as

gq ,q11
,Lq11

5gq ,q11
,0

1gq ,q11
,0 Aq11,q

† gq ,q11
aLq11

1gq ,q
,LqAq ,q11

† gq11,q11
aLq11

1gq ,q
rLqAq ,q11gq11,q11

,Lq11 .

~A2!

Substituting Eq. ~A2! in Eq. ~A1!, we obtain

@I2gq11,q11
r0 Aq11,qgq ,q

rLqAq ,q11#gq11,q11
,Lq11

5gq11,q11
r0 Sq11,q11

, gq11,q11
aLq11

1gq11,q11
r0 Sq11,q

, gq ,q11
aLq11

1gq11,q11
r0 Aq11,q@gq ,q11

,0
1gq ,q11

,0 Aq11,q
† gq ,q11

aLq11

1gq ,q
,LqAq ,q11

† gq11,q11
aLq11 # . ~A3!

Using Eq. ~27! and gq ,q11
,0

5gq ,q
rLqSq ,q11

, gq11,q11
a0 , which fol-

lows from Eq. ~36!, we obtain

gq11,q11
,Lq11

5gq11,q11
rLq11 @Sq11,q11

,

1Aq11,qgq ,q
,LqAq ,q11

† #gq11,q11
aLq11

1gq11,q11
rLq11 Sq11,q

, gq ,q11
aLq11

1gq11,q11
rLq11 Aq11,qgq ,q

rLqSq ,q11
, gq11,q11

aLq11 . ~A4!

Noting that gq11,q
rLq11

5gq11,q11
rLq11 Aq11,qgq ,q

rLq , Eq. ~A4! can be
written as
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gq11,q11
,Lq11

5gq11,q11
rLq11 @Sq11,q11

,
1sq11

, #gq11,q11
aLq11

1gq11,q11
rLq11 Sq11,q

, gq ,q11
aLq11

1gq11,q
rLq11Sq ,q11

, gq11,q11
aLq11 , ~A5!

where

sq11
,

5Aq11,qgq ,q
,LqAq ,q11

† . ~A6!
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